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The paper investigates the limits Imposed by Drucker's postulate [1 and 2]

ondiossible ¥ield limits in tension or compression for anisotropic plastic
media.

Let us consider an anisotropic elastic-plastic body; whether the aniso-
tropy exists from the beginning or whether it 1s a result of certain defor-
mation process, will be of no importance. We shall assume that the mean
pressure does not affect the plastic properties of the material.

Suppose that the body 1s under the action of
a certaln system of body forces and surface loads
which give rise to a state of stress o,,* within
the body. Suppose also that a further ioading
from some external action is applled to the body
and then removed. Drucker's postulate [1 and 2]
requires that the work done by the external forces
during loading 1s positive and that the work done
by the external forces over the whole cycle of
loading and unloading 1s not negative. Let o,
represent the state of stress in the body after
the applicatlon of the external forces and ¢,
the rate of plastic deformations. It follows
from Drucker's postulate that

0357 0% )eg; >0 (1)
Fig. 1 If the yleld surface is given in the form
@@ =1 (2)

then it follows from (1) that in the six-dimensional space the surface (2)
will not be concave and the rate of plastic deformations will be given by
the assoclated flow law ~ a9

ij = dci]- @)

The yleld surface of any plasticvally anisotropic body which is insensitive
to hydrostatic pressure can be written in the following form for certain
fixed point in time

f(0y— 03,6, — G5, 03— O3, L, my, ny) =1 )
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where 1,, my, ni are the directlon cosines of the principal directions as

shown in the Teble. If two of the principal stresset are equal, then in the
plane in which these principal stresses lie all
directlons willl be principal directions, and there-

' i } 2 | 3 fore the plasticity condition need not depend on the
direction cosines of these directions, i.e. the
z I my ny following equalities must hold:
y Iy m ny Of jon; =08f/0m; =0  for 32 =03
g ls ms | ng afjol, =afjom, =0 for 51 =a

af/all.=5f/ani =0 for G == O3

If the yleld limits in tension and compression are known in three mutually
orthogonal directions, then in the deviation plane of Fig.l six points are
known on the yield curve. It follows from the condition of non-concavity of
the yield surface that all the possible plasticity condltlons lie between
the hexagon APRCDEF and the outer six-cornered star obtained by forming the
sldes of the hexagon, and that the plasticity condition in the form of .the
hexagon ABCDEF proposed in [3] defines the lower bound for the load combi-
nation at which the body passes into a plastic state.

In order to determine the range of variation of possible plasticity con-
ditions we must determine the restrictlons imposed by Drucker's postulate
on the yleld limits in tension and compression in every possible direction,
1.&. the restrictions imposed on the functions x{a,) and s(a,), where a,
are the cosines of the angles between the direction of the tension (or com-
pression) and the coordinate axes x, y and z .

In the case of pure tension in the djirection (1,, 1z, I1,) the following
state of stress 1s set up in the body:

o, = k(1) 112 o, = k(I 1.2 so=k (1) 1y?

)
T, = k(1) L, Too= k() Ll T = k() Ll

Suppose that as a result of some external forces the state of stress
o, = k{1 0,0, 9,20, T, =T, =T, =0 15 produced in the body and
that before the applicatlion of the external forces the body was elastic and
in a state of stress sufficlently close to that defined by (5) for certain

glven values of 1,. Suppose also the the external forces are shch that
they cause the body to pass from the state close to (5) to the state
o, =k(1,0,0), o,= 0, =T, =T, = T,, =0 only in an elastic manner. In

this case the lnequality (1) may be written in the form
[k (1, 0,00 — k(1) 13 e— k () Lie, — k(1) e, —

— k() by ey — k(1) Ll e, — k(1) Llye,, >0 (6)

where & &y €2 €0y €5y and Byz are the rates of plastic deformations for
the state of stress

o, = k(1,0,0), cy:cz:Tx::Tl,zz‘rxyr-“-O

In order to determine deformatlon rate at this point we apply the associ-
ated flow law.

Since 0; — O3 = (0, — 0,) + (0. — 0,), the plasticity condition (4) can always
be reduced to the form

f(oy— 0y, 00— O3, 1, 1y, my) =1

Having solved the plasticity condition for o, —¢, we ezpand this solution
in a series in powers of (¢, —@a)

_ . of af
01— 0y “k(li)—‘:l (0g —0g) — . .. (A:d (2 —23) d(cl—c2))
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Here we set the expression o,-— 0y U, G,— 0,== k{/;) for 4 and in
this way 4 will be a function only of the directlon cosines 1y Mys Ny

Condition (7) may be written in the form

0, — 0y .l . 1 .
k1) () T o e ™)
Applying the assoclated yield law (8), we obtain
b L 95y 0o, ok 9l _ - G0 Ao
Eg MR (L TR oy e TR L gy 292 PO
Y L Va kdﬁu a;; | ! Tl doy; e kdUU Ao, |
3 g1 O 17 34 In, !
(0 — ) (ST T g ) BL ey O Ty )
L di, ooy, o 4oy on, 00, ' |

The stress components are related to the principal stresses and the
direction cosines by Formulas

o, @l - Gupt I, == Oyt ng )

Only three of the direction cosines are independent, since they are rela-
ted as follows:
Lt -+ mgmg < nyny = éij (11
Difféerentiating Equations (10) and (11) with respect to o¢,, and substi-
tuting the values of the direction cosines

h=me=mng:=1, L= L, =m =mg=ny == ny =0,

3

we obtain, after simple rearrangement,

doy _ 00y _ 005 _ P .
Jes, = 90, 4o, ’ a5
a1, =:_‘am1 _ 1 al, ==__fﬁi=:~_i__ (12)
My Oy 01— 037 9Ty 9T, 01— 0y
omg _anz _ 1 ol — a’i"i —_ (?LO& =0
Jv,, T 0y, 0y—o0y’ day; Ay doy;

Substituting the values given by (12) into equalities (9), we find that

A L 7 | I E Sy i B R
1 a8k 0,— 03 0 A 1
Eou ™ ‘{7— Tk ol T 0, — a,0l, kot
t dhoy—0ay 00— 05 0 A |
ﬁ=ﬂ“Tﬁa_%+a:@m7“ -] ()

0.1 .1
fmxﬂﬁg—ig+-~]

Setting @, =0, in equalities (13) we obtain

£, 7= A, g, kel — 1), e, = = o
ook ok 2oty ,
Exu ™ T T} T Cve =7 (’)/; ’ e =4 (0/:12 - JI ()

If the point g,= 0, is 2 point of intersection of regular surfaces, then
by representing all these surfaces in the form (8) and making use of the
concept of a generalized plastic potential (4], we obtain equality (14) in

the form
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ax:M—i—...-}-kn, ey:?»k(Ak—ﬂ, g, = MA

_ M4 ..o +A, ok =__Al+...+k_n ok
Fay = 3 9l ' K 3l
L (A, aAk)
karrIa ongy
180 Aqy ..., Ay > 0. Substituting the values obtained into inegquality

A b
(6), we rind that

(ko — K12 (hy + « o+ A + kl2A, (1 — A4 + k@A A, +
k {9k Bk o <6Ak 0_4,‘) .
o (Bt ) O Ay TR (G — ) >0 (1)

/

Here the quantities with the index O are evaluated at the polnt
L, =my =n3=1.

Setting all A, with the exception of A, equal to zero, we obtain

by — kI2—(4; — 1) k12+Ak13+ L, k ‘2’%
2
. k ok a4; 04
4+ I 2 2 klyt
Y Ol + { Bny  Bmy J 920 (16)

We will show that the quantity in square brackets in Equation (16) can
be set equal to zero by the choice of n, and m;

The quantity 4, is the coefficlent of O, — Oy

in the plasticity ¢ondition (7). If we reverse the
44 directions of axes 2 and 3 , condition (7) must not
we altered, and consequently

Ay (mg, ng) == Ay (= rig, — ny)

/

Instead of mz and n, we introduce new varlables
£ =my—ny, and n =my; +n,. Then

. M 0 0
< dng amy g
and aAi/ag vanishes for certain value of € ,since
é By a choice of m and n , condition
Flg. 2 (l can now be reduced to the form
B B A (L mm 1) Big® - 1k
kodka koo l.“
—— . R \ Lo
ko i [1]2 ' /l]: "y U/{ 0 (Al)
Supposing that until the application of the additional loading 1, = Is
or 1, =—1s , we establish that x(7,) must be such that
., o o, U ay Iy 1,
o = Byt R R et S R e 0 (1 - —~~72~-~ﬂ) -
. ' (
. 1Ok, ol Iy — 1y
By — B0 B3 b G Ll gt >0 (1* — "’“2'“‘)

There are no terms in the inegqualities (18) which are related to the form
of the plasticity condition, and these inequalities.determinc the limitations
on the results of possible experimental values of the yield limits in all
possible directions for materials obeying Drucker's postulate.

I1f we take into account that
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ko dky ko Bk ok, ko
dly dly ol dl, ~ 8l Ol
then the inequalities (18) assume the form
1 ok
_ 2 - — . Lho
p ko— k+ 3k2+EY1—212 % T
le 0Oko

ko— k+ 3kLE+ RV I =212 & ol =0 (19)

14 / The two inequalities (19) are equivalent and

their slight difference in form is due solely to
the cholce of the initial system of coordinates;
in future we shall use only one of them.

In order to formulate conditions (19) locally,
we assume that the external force system is suf-
ficlently small and that we can take it as close

Fig, 3 to zero as we like. Expanding the left-hand side
of (19) in a series in 7 , letting 7 tend to
zero and dividing both sides of the lnequality by 12, we obtain

d%k 1 [ 3k\?
2+ 0+ () >0 (20)

. We introduce the angle ¢ 1n the plane 1, =1, , as shown in Flg.2.
‘hen

l=1/,sin ¢
Inequality (20) now assumes the form

d2k 1 dk \2
Skt —k—(%) >0 21)

If we make an appropriate cholce of coordinate system x,y,z , it is not
difficult to see that the inequality (21) holds in any plane, and since on
rotation through any angle the form of inequality (21) remains unaltered,
i1t follows that it holds not only for ¢ = O but for any angle o .

Let us consider some plane in the body and 4 . . _
select a direction 1n this plane as the axis x Ve !
of a system of polar coordinates o , ¢. For 3tb—i L /
each value of the angle ¢ we measure p as / )
the yleld 1imit in the direction defined by 5 l/ /
this angle. We thus obtaln the curve shown / N
in Fig.3, the equation for which 1s / / /
7
p=h® (22) A /l BIEAN
A A7 [150°780°
Inequality (21) requires that wn° 1207 150°% 1
sSindu - dsinp =% (23) Fig. 4

where u 1s the angle between the directlon of the tangent to the curve and
the radlus vector (Fig.3) and x = x(g)/R 1s the nondimensional curvature
of the curve. In Flg.4t the field of variation of the parameters x and u
is shown hatched.

Thus Drucker's postulate imposes restrictions on the curves (22), which
are convex relative to the origin of coordinates, but on segments where
these curves are concave, inequality (23) 1is satisfied for any u > O .
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