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The paper Investigates the limits Imposed by Drucker's 
on possible yield limits in tension or compression for 
media. 

postulate [l and 21 
anisotropic plastic 

Let us consider an anisotropic elastic-plastic body; whether the aniso- 
tropy exists from the beginning or whether it Is a result of certain defor- 
mation process, will be of no importance. We shall assume that the mean 
pressure does not affect the plastic properties of the material. 

Suppose that the body Is under the action of 
a certain system of body forces and surface loads 
which give rise to a state of stress 

"1" 
* within 

the body. Suppose also that a further oading 
from some external action Is applied to the body 
and then removed. Drucker's postulate [l and 21 
requires that the work done by the external forces 
during loading Is positive and that the work done 
by the external forces over the whole cycle of 
loading and unloading Is not negative. Let u,, 
represent the state of stress In the body after 
the application of the external forces and cIJ 
the rate of plastic deformations. It follows 
from Drucker's postulate that 

:oij-- Oij*)Eij > 0 (1) 

If the yield surface is given in the form 

then it follows from (1) that In the six-dimensional space the surface (2) 
will not be concave and !he rate of plastic deformations will be given by 
the associated flow law 

a'F 
‘ij = dn..T (3) 

-% 

The yield surface of any plastioaiiy anlsotroplc body which Is Insensitive 
to hydrostatic pressure can be written In the following form for certain 
fixed point In time 

f (al-- oi,o, -- crs, o'3-- (53, li, "i, nJ = 1 (4) 
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where I,, m,, nr are the direction cosines of the principal directions as 
shown ln the Ts.ble. If two of the principal stresses are equal, then in the 

plane In which these principal stresses lie all 

)1j?/3 
directions will be principal directions, and there- 
fore the plasticity condition need not depend on the 
direction cosines of these directions, I.e. the 

2 11 ml nl following equalities must hold: 

Y 12 m2 n.2 JficYni=cYf/~mi=O for 32 = 0s 
z 13 nL3 n3 af /ali = af J ami = 0 for 31 = 0% 

af f al, = af pn, = 0 for cl= a3 

If the yield limits In tension and compression are known In three mutually 
orthogonal directions, then In the deviation plane of Fig.1 six points are 
known on the yield curve. It follows from the condition of non-concavity of 
the yield surface that all the possible plasticity conditions lie between 
the hexagon ABC'D,?ZF and the outer six-cornered star obtained by forming the 
sides of the hexagon, and that the plasticity condition In the form of.the 
hexagon ABCDEF proposed In [3] defines the lower bound for the load combi- 
nation at which the body passes Into a plastic state. 

In order to determine the range of variation of possible plasticity con- 
ditions we must determine the restrictions Imposed by Drucker's postulate 
on the yield limits In tension and compression In every possible dlrectlon, 
I.e. the restrictions Imposed on the functions k(c,) and s(ol), where ci 
are the cosines of tne angles between the direction of the tension (or com- 
pression) and the coordinate axes T, I/ and s . 

In the case of pure tension In the dlrectlon (I,, l,, 13) the following 
state of stress Is set up in the body: 

Suppose that as a result of some external nrces the state of stress 
ox -= h (1 0, O!, JU -- PO,=-t .ry = tU_ m= t,V, -= s - Is produced In the body and 

that before the application of th e external forces the body was elastic and 
In a state of stress sufficiently close to that defined by (5) for certain 
given values of ll. Suppose also the the external forces are shch that 
they cause the body to pass from the state close to (5) to the state 
o,,. 7 k (1, 0, 0). o1, = az -mT TX,, = rt!,: ‘: TX; = 0 only in an elastic manner. In 
this case the Inequality (1) may be written In the form 

[k (1, 0, 0) - k (li) fIa] E,- k (li) 1,” Ed -- k (li) l:42 c2 - 

where s.~ &VI "z: sxyj E~z and "vz are the rates of plastic deformations for 
the state of stress 

=x = k (1, 0, 0), oy = oz = TX2 = ZIIZ = tXU f 0 

In order to determine deformation rate at this point we apply the associ- 
ated flow law. 

Since (J1 - o3 = (ol- a,)-/- (a,-- U,),the Plasticity condition (4) can always 
be reduced to the form 

f (a1 - u,, up - us,. li, “‘i, ni) = 1 

Having solved the plasticity condition for u, -us we espand this solution 
In a series In powers of (0, - a3) 

~,-u~=k(l~)-_~(u~-~~)‘... ‘J_2-_ af 
d (0.L - 03) ! d (01- 02) (7) 
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Here we set the expression I 
this way A will be a function %y "df-$e 

Condition (7) may be written in the form 

ci. -- UC = f; (ii] for A and In 
direction cosines I,, m,, nI. 

Applying the associated yield law (8), we obtain 

The stress components are related to the principal stresses and the 
direction cosines by Formulas 

oij G,l,lj ;- 04111‘l.:i (T.,/l n; L , (1’)) 

Only three of the direction cosines are independent, since they are rela- 
ted as follows: 

lilj + rni,rlj + ni,tj -= aij (II) 

Differentiating Equations (10) and (11) with respect to o,, and substl- 
tuting the values of the direction cosines 

/, Lx m* _ ns :: 1 1 I, -~= 1; = ,H, :z ,,1s = R1 = nz := 0, 

we obtain, after simple rearrangement, 

(I’) 

an, 

q,, 

1 ala arrl i( ana _ = -_. = 0 
U? - u3 ’ aoij aoij aoij 

(1:;) 

Substituting the values given by (12) into equalities (g), we find that 

E' == i,+ . . . . F .x II r~ h (/I - 1) A- . . , Fz 7 - ).. 1 -I,. _ 

Setting a2 =U3 in equalltles (13) we obtain 

F _r- 1, 3 
F!I -7 ?* (/I - I!, F_ =: - ;.. I 

j” dk ?b rlh- 

E.vl, = - -h_- -(Ix v F.,; = -r;- ,,I, * t’ 
l/r (Ii, 

If the point u2= O3 Is a point of intersection of regular surfaces, then 
by repraesenting all these surfaces in the form (8) and making use of the 
concept of a generalized plastic potential [41, we obtaln equality (14) in 
the form 
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5% = a, + . . . + a,, Ev = h,(A, - 11, E, == api, 

h, i- . . . + 1, ak h, f . . . -t- h, ah. 

e Xl, = - k al2 , %z = - k a12 

Also hl, . . ., 
(6)> 

h,>O. Substituting the values obtained into inequality 
we find that 

(k, - kl12) (h, + . . . + $,I + h-&z2 h, (1 - Ak) t: kh2akAk + 

-+ + ($f 1,12 + $f &&) (h, + . . . i- h,) 
aAk a.4, 

- kz2t3hk -&- - x i ) a0 
2 2 8 

Here the quantities with the index 0 are evaluated at the point 

I, = m, = n3 = 1. 

Setting all Ar with the exception of X, equal to zero, we obtain 

k LVc, 
k, - klIz - (_$ -- 1) ]r122 + Aikl, + III, k, al + 

2 

k t?k, 
+ III.2 - -_ + 

k, d, 
k121, ,, 0 

(15) 

(16) 

We will show that the quantity In square brackets in Equation (lo) can 
be set equal to zero by the choice of nz and m3 . 

The quantity A, is the coefficient of o2 - o3 
In the plasticity condition (7). If we reverse the 
dlrections of axes 2 and 3 , condition (7) must not 
'>e altered, and consequently 

_-lli (m3: 7h) -= 2li (- 1x3, - 112) 

Instead of m3 and n, we introduce new variables 
5 = m3 -n2 and n = m3 +n2. Then 

n. I . a..1 
2 

* _1=--_._ 3 G:li 

d/f., (?I??, ;1; 

Fig. 2 

and aA,/ag vanishes for certain value of 5 ,since 
= Ai t--S). By a choice of m and n , condition 
can now be reduced to the form 

/;,--- I;/,'-!- cl-- _li) I;',' m:- _li/J;,' -;- 

(17) 

Supposing that until the application of the additional loading l2 = l3 
or l2 =-1, , we establish that k(l,) must be such that 

There are no terms in the inequalities (18) which are related to the form 
of the plasticity condition, and these inequalities.determin,? the limitations 
on the results of possible experimental values of the yield limits in all 
possible directions for materials obeying i)rucker's postulate. 

If we take into account that 
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then the inequalities (18) assume the form 

ru 

@ 

k,- k+ 3kl=-t kJfl-2P +$,O 

k, - k + 3k&g2 + k 1/l - 21e2 4% >,O (19) 

Y The two Inequalities (19) are equivalent and 
their slight difference In form Is due solely to 
the choice of the Initial system of coordlnatts; 
In future we shall use only one of them. 

In order to formulate conditions (19) locally, 
we assume that the external force system Is suf- 
ficiently small and that we can take It as close 

Flg. 3 to zero as we like. Expanding the left-hand side 
of (19) In a series In 1 

zero and dividing both sides of the Inequality by 1~1 
letting 1 tend to 
we obtain 

We Introduce the angle cp 
Then 

In the plane I2 = l3 , as shown In Flg.2. 

1 = iiz sin cp 

Inequality (20) now assumes the form 

$+3k+ +($)2>0 

If we make an appropriate choice of coordinate system x,~,z , It Is not 
difficult to see that the Inequality (21) holds In an 
rotation through any angle the form of Inequality (21 3 

plane, and since on 
remains unaltered, 

it follows that It holds not only for cp = 0 but for any angle cp . 
Let us consider some plane in the body and 

select a direction In this plane as the axis 
of a system of polar coordinates p , ‘p. For 
each value of the angle rp we measure p as 
the yield limit In the direction defined by 
this angle. We thus obtain the curve shown 
in Fig.3, the equation for which Is 

P = k (cp) 

Inequality (21) requires that 

('2) 

Sjl13 p + 3 Sill p .> x 043) Fig. 4 

where 1s the angle between the direction of the tangent to the curve and 
the radius vector (Flg.3) and x = k(m)/&' Is the nondimensional curvature 
of the curve. In Fig.4 the field of variation of the parameters K and u 
Is shown hatched. 

PUS Drucker's postulate Imposes restrictions on the curves (22), which 
are convex relative to the origin of coordinates, but on segments where 
these curves are concave, inequality (23) Is satisfied for any p > 0 , 
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